skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hershkowitz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 5, 2026
  2. We give an algorithm for Centroid-Linkage Hierarchical Agglomerative Clustering (HAC), which computes a $$c$$-approximate clustering in roughly $$n^{1+O(1/c^2)}$$ time. We obtain our result by combining a new Centroid-Linkage HAC algorithm with a novel fully dynamic data structure for nearest neighbor search which works under adaptive updates. We also evaluate our algorithm empirically. By leveraging a state-of-the-art nearest-neighbor search library, we obtain a fast and accurate Centroid-Linkage HAC algorithm. Compared to an existing state-of-the-art exact baseline, our implementation maintains the clustering quality while delivering up to a $$36\times$$ speedup due to performing fewer distance comparisons. 
    more » « less
    Free, publicly-accessible full text available December 2, 2025
  3. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    Average linkage Hierarchical Agglomerative Clustering (HAC) is an extensively studied and applied method for hierarchical clustering. Recent applications to massive datasets have driven significant interest in near-linear-time and efficient parallel algorithms for average linkage HAC. We provide hardness results that rule out such algorithms. On the sequential side, we establish a runtime lower bound of n^{3/2-ε} on n node graphs for sequential combinatorial algorithms under standard fine-grained complexity assumptions. This essentially matches the best-known running time for average linkage HAC. On the parallel side, we prove that average linkage HAC likely cannot be parallelized even on simple graphs by showing that it is CC-hard on trees of diameter 4. On the possibility side, we demonstrate that average linkage HAC can be efficiently parallelized (i.e., it is in NC) on paths and can be solved in near-linear time when the height of the output cluster hierarchy is small. 
    more » « less
  4. null (Ed.)
    Network design problems aim to compute low-cost structures such as routes, trees and subgraphs. Often, it is natural and desirable to require that these structures have small hop length or hop diameter. Unfortunately, optimization problems with hop constraints are much harder and less well understood than their hop-unconstrained counterparts. A significant algorithmic barrier in this setting is the fact that hop-constrained distances in graphs are very far from being a metric. We show that, nonetheless, hop-constrained distances can be approximated by distributions over ``partial tree metrics.'' We build this result into a powerful and versatile algorithmic tool which, similarly to classic probabilistic tree embeddings, reduces hop-constrained problems in general graphs to hop-unconstrained problems on trees. We then use this tool to give the first poly-logarithmic bicriteria approximations for the hop-constrained variants of many classic network design problems. These include Steiner forest, group Steiner tree, group Steiner forest, buy-at-bulk network design as well as online and oblivious versions of many of these problems. 
    more » « less